Evaluation of Epidermal Growth Factor Receptor by FISH on Cytologic Vs Histologic Specimens of Non-small Cell Lung Cancers

Abha Khanna, M.A., CT (ASCP), Ricardo Fernandez, B.S., Jinping Zhang, M.S., Tanweer Zaidi, M.D., Nancy P. Caraway, M.D., Ruth L. Katz, M.D.

November 8, 2008
Introduction

- Lung Cancer is one of the most common cause of cancer deaths
- NSCLC accounts for ~ 85% of all lung cancers
- Targeted therapy against EGFR following relapse after platinum based chemotherapy is indicated for patients with advanced NSCLC
EGFR Signaling Pathway

Ligand binding to EGFR induces receptor dimerization & activation of the TK activity
EGFR mutations and increased copy number

- May predict response to EGFR tyrosine kinase inhibitors (EGFR-TKI) in NSCLC

- Mutations are detected by PCR but increased copy number is detected by FISH

- There is a correlation between mutations and increased gene copy number
FISH Testing

- Currently mutation status and FISH testing in NSCLC typically relies on the use of histologic specimens.

- In advanced stage, excisional biopsies may be difficult to obtain.

- Pathological diagnosis may be made solely on the basis of cytology procured from FNA and pleural fluids.

- Hence, it is important to evaluate the accuracy of gene copy number by FISH on cytologic specimens for guidance in therapy.
Goal

- To correlate the EGFR FISH pattern of histologic specimens with the cytologic specimens from the same site
- To validate that FISH results performed on cytology specimens may substitute for FISH performed on histologic specimens
Materials and Methods

34 Cases Evaluated

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Adenocarcinomas</td>
<td>18 Stage I</td>
</tr>
<tr>
<td>15 Squamous Cell Carcinoma</td>
<td>9 Stage II</td>
</tr>
<tr>
<td>3 NSCLC</td>
<td>4 Stage III</td>
</tr>
<tr>
<td></td>
<td>3 Stage IV</td>
</tr>
</tbody>
</table>

- Touch imprints with corresponding histologic sections from same site
- None of the patients received any therapy prior to surgery
Materials and Methods

- The LSI EGFR 7p12 Spectrum Orange/CEP 7 Spectrum Green dual color probe set (Abbott Laboratories, USA) was used.
- FISH was performed on imprints and histologic sections.
- A minimum of 50 cancer cells were scored.
- FISH scores were correlated with histology and stage of diagnosis by Pearson correlation.
Scoring of Signals

FISH results were defined according to the Cappuzzo* et al’s criteria as follows:

FISH-positive: High-polysomy (≥ 4 EGFR/Cep 7 gene copies in ≥40% cells) or Amplification tight EGFR clusters ≥ 15 copies & EGFR gene to Cep 7 ratio of ≥ 2 in 10% of the analyzed cancer cells)

FISH-negative: if disomy (2 copies each), trisomy (3 copies each in ≥ 40% of cells), low-polysomy (4 EGFR/Cep 7 gene copies in ≤ 40% cells)

FISH-deleted: (EGFR copies < CEP 7 signals)

High-Polysomy
≥ 4 EGFR copies in ≥40% cells

PAP 20X

Imprint

H & E 20X

Histology
Amplification- EGFR gene (O) to Cep 7 (G) ratio ≥ 2 in 10% of the Cells
Disomy - 2 Orange & 2 Green Signals

PAP 20X

Imprint

H & E 20X

Histology
Low-polysomy
Trisomy - 3 copies each in ≥ 40% of cells

PAP 20X
Imprint

H & E 20X
Histology
Deleted
EGFR copies (O) < CEP 7 (G)

PAP 40X

Imprint

H & E 20X

Histology
Correlation of EGFR by FISH with Cytology, Histology & Stage

<table>
<thead>
<tr>
<th></th>
<th>Cytology</th>
<th>Stage</th>
<th>Histology</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISH Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>15</td>
<td>13</td>
<td>I-II</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>II-IV</td>
<td>II-II</td>
<td>3</td>
</tr>
<tr>
<td>FISH Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>16</td>
<td>14</td>
<td>I-II</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>II-IV</td>
<td>II-II</td>
<td>2</td>
</tr>
<tr>
<td>FISH Deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>3</td>
<td>3</td>
<td>III-IV</td>
<td>2</td>
</tr>
</tbody>
</table>

Correlation of EGFR by FISH on Cytology with Type & Stage

<table>
<thead>
<tr>
<th>ADC</th>
<th>Stage</th>
<th>SCC</th>
<th>Stage</th>
<th>NSCLC</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISH Positive</td>
<td>10</td>
<td>9</td>
<td>I-II</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>III-IV</td>
<td></td>
<td>1</td>
<td>III-IV</td>
</tr>
<tr>
<td>FISH Neg/Del</td>
<td>6</td>
<td>4</td>
<td>I-II</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>III-IV</td>
<td></td>
<td>3</td>
<td>III-IV</td>
</tr>
</tbody>
</table>

ADC: Adenocarcinoma; SCC: Squamous Cell Carcinoma; NSCLC: Non Small Cell Carcinoma; Neg: Negative; Del: Deletion
Correlation of EGFR by FISH on Histology with Type & Stage

<table>
<thead>
<tr>
<th></th>
<th>ADC</th>
<th>Stage</th>
<th>SCC</th>
<th>Stage</th>
<th>NSCLC</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISH Positive</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>I-II</td>
<td>I</td>
<td>I-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>III-IV</td>
<td>II</td>
<td>III-IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISH Neg/Del</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>I-II</td>
<td>II</td>
<td>I-II</td>
<td>I-II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>III-IV</td>
<td>II</td>
<td>III-IV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADC: Adenocarcinoma; SCC: Squamous Cell Carcinoma; NSCLC: Non Small Cell Carcinoma; Neg: Negative; Del: Deletion
Results

- EGFR on cytology specimens were highly correlated with EGFR histology specimens (p < 0.0001)

- In the FISH-positive subgroup, cytology but not histology specimens were highly correlated with stage (p < 0.008)
Results

- 2 cases that were FISH positive on histology were FISH negative on cytology

- 2 cases that were FISH positive on cytology were FISH negative on histology

- Deletions of EGFR occurred in PD tumors that presented at high stage
The discrepancies between the histology & cytology may be due:

- Truncated nuclei on sections, leading to lower # of gene signals/nucleus (on cytology nuclei are intact)
- Overlapping nuclei, leading to higher # of gene signals/nucleus
- Variable signal strength or pattern due to uneven sectioning
Conclusions

• This study demonstrated that EGFR gene analysis by FISH for prediction of response to TKI in NSCLCs is feasible in cytological specimens.

• Using the criteria of Cappuzzo et al we showed a high correlation of EGFR FISH between cytology and histology specimens.
Conclusions

- EGFR evaluation by FISH on cytology specimens are easier to interpret and less time consuming to perform.

- Differences in EGFR pattern are most likely due to sampling & technical factors and not interpretation.
Conclusions

- EGFR polysomy and amplification on cytology appears to be correlated with stage.

- The findings reported in this pilot study are encouraging and if validated, will represent a minimally invasive method to evaluate EGFR status on cytologic specimens for initiation of targeted molecular therapy.
Acknowledgements

Image Analysis Laboratory
Dr. Hua-zhong Zhang, M.D.

Department of Epidemiology
Dr. Margaret R. Spitz, M.D.
Mary A. Vargas, Research Coordinator

Department of Thoracic & Cardiovascular Surgery
Dr. Jack A. Roth, M.D.
Dr. Ara A. Vaporociyan, M.D.
Supported in part by a grant from the Specialized Program of Research Excellence (SPORE) in Lung Cancer (grant P50CA70907), National Cancer Institute, Bethesda, MD
Thank You

University of Texas MD Anderson Cancer Center

Houston, TX